Braided modules and reflection equations

نویسنده

  • D. Gurevich
چکیده

We introduce a representation theory of q-Lie algebras defined earlier in [DG1], [DG2], formulated in terms of braided modules. We also discuss other ways to define Lie algebra-like objects related to quantum groups, in particular, those based on the so-called reflection equations. We also investigate the truncated tensor product of braided modules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crossed Modules and Quantum Groups in Braided Categories

Let A be a Hopf algebra in a braided category C. Crossed modules over A are introduced and studied as objects with both module and comodule structures satisfying a compatibility condition. The category DY (C)AA of crossed modules is braided and is a concrete realization of a known general construction of a double or center of a monoidal category. For a quantum braided group (A,A,R) the correspo...

متن کامل

Quantum hyperboloid and braided modules

When a quantum hyperboloid is realized, as a three parameter algebra Ah,q, in the usual manner, the following problem arises: what is a ”representation theory” of this algebra? We construct the series of all spin representations of Ah,q, and we discuss a braided version of the orbit method, i.e. a correspondence between orbits in g∗ and g-modules. A braided trace and a braided involution are di...

متن کامل

Quantum Hyberboloid and Braided Modules

We construct a representation theory of a “quantum hyperboloid” in terms of so-called braided modules. We treat these objects in the framework of twisted Quantum Mechanics. Résumé Nous construisons une théorie de représentations pour « l’hyperboloïde quantique » en termes de modules tressés. Nous traitons ces objets dans le cadre de la mécanique quantique tordue.

متن کامل

Hopf Galois Extension in Braided Tensor Categories

The relation between crossed product and H-Galois extension in braided tensor categories is established. It is shown that A = B#σH is a crossed product algebra if and only if the extension A/B is Galois, the inverse can of the canonical morphism can factors through object A⊗B A and A is isomorphic as left B-modules and right H-comodules to B⊗H in braided tensor categories. For the Yetter-Drinfe...

متن کامل

Differential equations and intertwining operators

We show that if every module W for a vertex operator algebra V = ∐ n∈Z V(n) satisfies the condition dimW/C1(W ) < ∞, where C1(W ) is the subspace of W spanned by elements of the form u−1w for u ∈ V+ = ∐ n>0 V(n) and w ∈W , then matrix elements of products and iterates of intertwining operators satisfy certain systems of differential equations. Moreover, for prescribed singular points, there exi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996